1. The electric field due a long wire with charge per unit length λ is:

$$\vec{E} = \frac{\lambda}{2\pi\varepsilon_0 r}\hat{r}$$

Suppose the wire lies along the x-axis. What is the difference in electric potential between points

3. For the potential $V = 3x^2 - 6xy$, what is the corresponding electric field at the point (x, y) = (2, 2)? (3 marks)

$$\vec{E} = -\frac{dV}{dx} = -(6x - 6y)$$

$$\vec{E} = \vec{E} \times \hat{1} + \vec{E} y \hat{1}$$

$$\vec{E} = \vec{E} \times \hat{1} + \vec{E} y \hat{1}$$

$$(2,2)$$
 $E_x = -(12-12)=0$
 $E_y = (-12) = +12$

$$\vec{E} = 12\hat{J}$$

- 1. (a) Three capacitors are connected to a battery as shown in the figure. Their capacitances are $C_1 = 3C$, $C_2 = C$, and $C_3 = 5C$. (a) What is the equivalent capacitance of this set of capacitors? (2 marks)
- (b) Find the charge stored on each capacitor in terms of C and the potential difference ΔV supplied by the battery. (3 marks)
- (c) Assume that C_3 is increased, how does the charge stored by each capacitor change (increase or decrease)? (3 marks)

